Edge mixing dynamics in graphene p–n junctions in the quantum Hall regime
نویسندگان
چکیده
Massless Dirac electron systems such as graphene exhibit a distinct half-integer quantum Hall effect, and in the bipolar transport regime co-propagating edge states along the p-n junction are realized. Additionally, these edge states are uniformly mixed at the junction, which makes it a unique structure to partition electrons in these edge states. Although many experimental works have addressed this issue, the microscopic dynamics of electron partition in this peculiar structure remains unclear. Here we performed shot-noise measurements on the junction in the quantum Hall regime as well as at zero magnetic field. We found that, in sharp contrast with the zero-field case, the shot noise in the quantum Hall regime is finite in the bipolar regime, but is strongly suppressed in the unipolar regime. Our observation is consistent with the theoretical prediction and gives microscopic evidence that the edge states are uniquely mixed along the p-n junction.
منابع مشابه
Quantized Transport in Graphene p-n Junctions in a Magnetic Field.
Recent experimental work on locally gated graphene layers resulting in p-n junctions has revealed the quantum Hall effect in their transport behavior. We explain the observed conductance quantization, which is fractional in the bipolar regime and an integer in the unipolar regime, in terms of quantum Hall edge modes propagating along and across the p-n interface. In the bipolar regime, the elec...
متن کاملGate-defined graphene quantum point contact in the quantum Hall regime.
We investigate transport in a gate-defined graphene quantum point contact in the quantum Hall regime. Edge states confined to the interface of p and n regions in the graphene sheet are controllably brought together from opposite sides of the sample and allowed to mix in this split-gate geometry. Among the expected quantum Hall features, an unexpected additional plateau at 0.5h/e2 is observed. W...
متن کاملTunable transmission of quantum Hall edge channels with full degeneracy lifting in split-gated graphene devices
Charge carriers in the quantum Hall regime propagate via one-dimensional conducting channels that form along the edges of a two-dimensional electron gas. Controlling their transmission through a gate-tunable constriction, also called quantum point contact, is fundamental for many coherent transport experiments. However, in graphene, tailoring a constriction with electrostatic gates remains chal...
متن کاملShot noise generated by graphene p–n junctions in the quantum Hall effect regime
Graphene offers a unique system to investigate transport of Dirac Fermions at p-n junctions. In a magnetic field, combination of quantum Hall physics and the characteristic transport across p-n junctions leads to a fractionally quantized conductance associated with the mixing of electron-like and hole-like modes and their subsequent partitioning. The mixing and partitioning suggest that a p-n j...
متن کاملSelective equilibration of spin and valley polarized quantum Hall edge states in graphene
We report on transport measurements of dual-gated, single-layer graphene devices in the quantum Hall regime, allowing for independent control of the filling factors in adjoining regions. Progress in device quality allows us to study inter-edge states scattering when the four-fold degeneracy of the Landau level is lifted by electron correlations, causing edge states to be spin and/or valley pola...
متن کامل